HOWDY!

WELCOME TO CSCE 221 — DATA STRUCTURES AND ALGORITHMS

1 ABSTRACT DATA TYPES (ADTS)

® An abstract data type (ADT) is an
abstraction of a data structure

®* An ADT specifies:

® Data stored

®* Example: ADT modeling a simple stock
trading system

® The data stored are

®* Operations on the data ®* The supported are
P PP
l ® Error conditions associated with * order (stock, shares, price)
operations
® order sell(stock, shares, price)
* void (order)
T p ® Error conditions:

® Buy/sell a nonexistent stock

® Cancel a nonexistent order

1\0 EXCEPTIONS

/
O
* Attempting the execution of an operation of ADT may sometimes cause an
error condition, called an exception
® Exceptions are said to be “thrown” by an operation that cannot be executed
l SIMPLY EXPLAINED

[

ARE YOU REALLY
SURE THAT THIS
VARIABLE CAN
NEVER EVER BE
NULL?

OF
COURSE!!!

NullPointerException

1N
i

° CH5.
X STACKS, QUEUES, AND DEQUES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES
AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM

NANCY M. AMATO

STACKS

®* The Stack ADT (Ch. 5.1.1)
®* Array-based implementation (Ch. 5.1.4)

®* Growable array-based stack

===

K\)
1\0 STACKS

O

* A data structure similar to a neat stack of something, basically only access to top
element is allowed — also reffered to as LIFO (last-in, first-out) storage

® Direct applications
®* Page-visited history in a Web browser
®* Undo sequence in a text editor

® Saving local variables when one function calls another, and this one calls another, and so on.

® Indirect applications
PP
/?) * Auxiliary data structure for algorithms

®* Component of other data structures

K\)
1\0 THE STACK ADT

/]
O . . g :
®* The ADT stores arbitrary objects ® Auxiliary stack operations:
* Insertions and deleticheiclicE e : returns the number of elements in the
stack
scheme

: a Boolean value indicating whether
l ® Main stack operations: the stack is empty

: inserts element e at the top of the * Attempting the execution of or on

an empty stack throws an

stack

: removes and returns the top element of

the stack (last inserted element)
; : returns reference to the top element

without removing it

i
;,\
)

il
)

IN-EN

F
!
E

1§ EXERCISE: STACKS

= ® Describe the output of the following series of stack operations
® Push(8)
® Push(3)
* Pop()
* Push(2)
l ® Push(5)

* Pop()
T * Pop()
p ® Push(9)

® Push(1)

%

RUN-TIME STACK

® The C++ run-time system keeps track of
the chain of active functions with a stack

® When a function is called, the run-time
system pushes on the stack a frame
containing

® |ocal variables and return value

®* Program counter, keeping track of the
statement being executed

® When a function returns, its frame is
popped from the stack and control is
passed to the method on top of the
stack

main() {
inti;
| =5;
foo(i);

}

foo(int j) {
int k;
k=j+1;
bar(k);

}

bar(int m) {

}...

1\\5 ARRAY-BASED STACK

= * A simple way of implementing the
Stack ADT uses an array
®* We add elements from left to right
® A variable keeps track of the index
l of the top element

Algorithm size()
return t + 1

Algorithm pop()
if empty() then
throw EmptyStackException
t<t —1
return S|t + 1]

D N

1\\5 ARRAY-BASED STACK (CONT) (

O

® The array storing the stack elements Algorithm push (o)
may become full) ‘ 4

if t =S.length — 1 then

® A push operation will then throw a

l throw FullStackException

®* Limitation of the array-based
i t—t+1

implementation
(ﬁ ® Not intrinsic to the Stack ADT S[t] <0
O

O

!
[o

1§ NOTE ON ALGORITHM ANALYSIS

®* Computer Scientists are concerned with describing how long an algorithm (computation) takes

* More detain in CSCE 222, MATH 302, and/or later in

Described through functions which show how time grows

as function of input, note that there are no constants!
0(1) — Constant time

O(logn) - Logarithmic time

O0(n) — Linear time

0(n?) — Quadratic time

course

Time

Constant

3

4 5 6
Input Size

Logarithmic

7

Linear

8

% 10

Quadratic

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF STACK ADT

® Performance
® Let n be the number of elements in the stack
® The space used is O(n)

® Each operation runs in time O (1)

® Limitations
®* The maximum size of the stack must be defined a priori, and cannot be changed

®* Trying to push a new element into a full stack causes an implementation-specific
exception

= ® In a push operation, when the array
is full, instead of throwing an
exception, we can replace the array
with a larger one
®* How large should the new array be?
: increase the size

by a constant ¢
: double the size

/5

1§ GROWABLE ARRAY-BASED STACK

Z Jip=
A)
P
!

Algorithm push(o)

if t = S.length — 1 then
A < new array of size ...
fori <~ Otot do
Ali] « SJi]

S« A
t—<t+1
S[t] < o

1\\5 COMPARISON OF THE STRATEGIES l....m e’ '

O
®* We compare the incremental strategy and the doubling strategy by analyzing
the total time T (n) needed to perform a series of n push operations
®* We assume that we start with an empty stack represented
l ®* We cadll of a push operation the average time taken by a push

T over the series of operations, i.e.,, T(n)/n

INCREMENTAL STRATEGY ANALYSIS

® Let ¢ be the constant increase and n be the number of push operations
®* We replace the array k = n/c times

® The total time T (n) of a series of n push operations is proportional to
n+c+ 2c + 3c + 4c + ... + kc < A

=n+c(1l+2+3+ ..+ k)
k(k + 1) 142+ +k
=n + ¢ _\{.
2 =)
n
=0(n+k2)=0(n+7)=0(n2)

2
* T(n) is 0(n?) so the amortized time of a push is o(n?) _ 0(n)

n

1§ DOUBLING STRATEGY ANALYSIS f

° ®* We replace the array k = log, n
times
® The total time T (n) of a series of N
l push operations is proportional to
n+1+2+4+8+ ..+ 2F
0 = n+ 2kt —1

=0(n+2%) =0(n+ 2°82™) = 0(n)
/] *T(n)is 0(n) so the amortized time of

a push is % =0(1)

1§ SINGLY LINKED LIST

= ® A singly linked list is a concrete data i
structure consisting of a sequence of i
nodes |

® Each node stores I\\

l * element

® link to the next node
O

b

STACK WITH A SINGLY LINKED LIST

®* We can implement a stack with a singly linked list
®* The top element is stored at the first node of the list

® The space used is O(n) and each operation of the Stack ADT takes O(1) time

AT T T T S e e T T T T T T TN

i S \ i
| f O 2L SE
i P - ‘M/ z |
\ - elements

S e

1\) EXERCISE

O

® Describe how to implement a stack using a singly-linked list
* Stack operations: push(x), pop(), size(), isEmpty()

® For each operation, give the running time

!
[7

1\) STACK SUMMARY

push(o) 0(1) 0 (n) Worst Case 0(1)
O(1) Best Case
o 0(1) Average Case

| 1%\@% ?

/
O
® The Queue ADT (Ch. 5.2.1)
® Implementation with a circular array (Ch. 5.2.4)
®* Growable array-based queue
l ® List-based queue

1§ APPLICATIONS OF QUEUES

/
O
® Direct applications
®* Waiting lines
® Access to shared resources (e.g., printer)
l ®* Multiprogramming
® Indirect applications
® Auxiliary data structure for algorithms
/}) ®* Component of other data structures
\ .

THE QUEUE ADT

The

Insertions and deletions follow the
scheme

ADT stores arbitrary objects

Insertions are at the rear of the queue and
removals are at the front of the queue

Main queue operations:

: inserts element e at the end of
the queue

: removes and returns the element
at the front of the queue

(8

S

® Auxiliary queue operations:

: returns the element at the front
without removing it

: returns the number of elements
stored

: returns a Boolean value
indicating whether no elements are
stored

® Exceptions

® Attempting the execution of dequeue
or front on an empty queue throws an

1§ EXERCISE: QUEUES

/
O
® Describe the output of the following series of queue operations

®* enqueue(8)

®* enqueue(3)

* dequeue()
l ® enqueue(2)

* enqueue())

* dequeue()
T * dequeueg()
p * enqueue(9)

® enqueue(l)

ARRAY-BASED QUEUE

®* Use an array of size N in a circular fashion

®* Two variables keep track of the front and rear
* f index of the front element

®* r index immediately past the rear element

® Array location 7 is kept empty
normal configuration

CLITIEEFEFEEE R [1]
012 f r

wrapped-around configuration

CREELT I T T T TITITEEEEEE
012 r f

1\) QUEUE OPERATIONS

O
®* We use the modulo operator Algorithm size()
(remainder of division) return (N — f +r) mod N
l Algorithm isEmpty()

return [=71

0

CLITIEEEFEE T [1]
012 f r

CREEL I T T TTITIT R
012 r f

1\) QUEUE OPERATIONS (CONT.)

®* Operation enqueue throws an exception if

Algorithm enqueue(0)
the array is full By

® This exception is implementation-dependent if SIZGO = N — 1 then

l throw FullQueueException

Qlr] <o
r<~r+1modN
T o

CLITIEEEFEE T [1]
012 f r

CREEL I T T TTITIT R
012 r f

1\\5 QUEUE OPERATIONS (CONT.)

O
®* Operation dequeue throws an Algorithm dequeue()
exception if the queue is empty if empty() th
| en
® This exception is specified in the :
queue ADT throw EmptyQueueException
1 0 < QIf]
f<f+1modN
Cf return 0
O
CILITITFEFFPFFFPFPPPT [1|
01 2 f r
CEFFIY T T T T T PP

012 r f

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF QUEUE ADT

® Performance

® Let n be the number of elements in the stack
® The space used is O(n)

® Each operation runs in time O (1)

® |imitations

®* The maximum size of the stack must be defined a priori, and cannot be changed

®* Trying to push a new element into a full stack causes an implementation-specific
exception

GROWABLE ARRAY-BASED QUEUE

®* In enqueue(e), when the array is full, instead of throwing an

exception, we can replace the array with a larger one
® Similar to what we did for an array-based stack

* enqueue(q) has amortized running time
* 0(n) with the incremental strategy

* 0(1) with the doubling strategy

1\) EXERCISE

/
O
® Describe how to implement a queue using a singly-linked list
* Queue operations: enqueue(x), dequeue(), size(), empty()
l ® For each operation, give the running time

[5

QUEUE WITH A SINGLY LINKED LIST

® The front element is stored at the head of the list, The rear element is stored at the tail of the list
* The space used is O(n) and each operation of the Queue ADT takes O(1) time

®* NOTE: we do not have the limitation of the array based implementation on the size of the stack

b /c the size of the linked list is not fixed, i.e., the queue is NEVER full. r
(" nodes h
rOnER i 111 ° T11]° 111 ° 11 ——— rear

S e

1\) QUEUE SUMMARY

enqueue(0) O (n) Worst Case
0(1) Best Case
O 0(1) Average Case

\

&
THE DOUBLE-ENDED QUEUE ADT (CH. 5.3) %@

The , ADT stores
arbitrary objects. (Pronounced ‘deck’)

Richer than stack or queue ADTs. Supports
insertions and deletions at both the front and the
end.

Main deque operations:

: inserts element e at the
beginning of the deque

: inserts element e at the end of
the deque

: removes and returns the element
at the front of the queue

: removes and returns the element at
the end of the queue

® Auxiliary queue operations:

: returns the element at the front
without removing it

: returns the element at the front
without removing it

: returns the number of elements
stored

: returns a Boolean value
indicating whether no elements are stored
® Exceptions

® Attempting the execution of dequeue or
front on an empty queue throws an

/
(

O

!
[p

1\) DOUBLY LINKED LIST f

" prev next

® A doubly linked list provides a natural i <\\o I o// i
implementation of the Deque ADT i 1 i

®* Nodes implement Position and store: :\ elem node

RS . -

® element
® link to previous node

® |ink to next node

.’ itions | trailer
* Special trailer and header | nodes/positions |
header nodes T~~~ T~~~ el TN e

\ elements

e e — — — — — — —

DEQUE WITH A DOUBLY LINKED LIST

® The front element is stored at the first node
® The rear element is stored at the last node

®* The space used is 0(n) and each operation of the Deque ADT takes O(1) time

first | | last
2N E A N S A N S A N
{ —— :‘_‘_‘_‘:_‘_:::&;:::::::::‘_‘_‘_&;‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_&\“_‘_‘_:’:I
Wi -9 SRl
i A - M 7~ > i

e e — — — — — — —

PERFORMANCE AND LIMITATIONS
- DOUBLY LINKED LIST IMPLEMENTATION OF DEQUE ADT

® Performance
® Let n be the number of elements in the stack
® The space used is O(n)

® Each operation runs in time O (1)

® Limitations
®* NOTE: we do not have the limitation of the array based implementation on the

size of the stack b/c the size of the linked list is not fixed, i.e., the deque is
NEVER full.

1\

/?;

DEQUE SUMMARY

eraseFront(), 0(1) 0(1) 0 (n) for one at list talil, 0(1)
eraseBack() 0 (1) for other

insertFront(o), 0(1) O(n) Worst Case 0(1) 0(1)
insertBack(o) 0(1) Best Case

0(1) Average Case
ront0, backO

(

INTERVIEW QUESTION 1

®* How would you design a stack which, in addition to push and pop, also has a
function min which returns the minimum element? push, pop and min should

all operate in O(1) time

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

1\.\5 INTERVIEW QUESTION 2

/
O
® In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of
different sizes which can slide onto any tower. The puzzle starts with disks sorted in
ascending order of size from top to bottom (i.e. , each disk sits on top of an even
l larger one). You have the following constraints:
(1) Only one disk can be moved at a time.
(2) A disk is slid off the top of one tower onto the next tower.
T O (3) A disk can only be placed on top of a larger disk.

Write pseudocode to move the disks from the first tower to the last using stacks.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

