
HOWDY!
WELCOME TO CSCE 221 – DATA STRUCTURES AND ALGORITHMS

SYLLABUS

ABSTRACT DATA TYPES (ADTS)

• An abstract data type (ADT) is an
abstraction of a data structure

• An ADT specifies:
• Data stored

• Operations on the data

• Error conditions associated with
operations

• Example: ADT modeling a simple stock

trading system

• The data stored are buy/sell orders

• The operations supported are

• order buy(stock, shares, price)

• order sell(stock, shares, price)

• void cancel(order)

• Error conditions:

• Buy/sell a nonexistent stock

• Cancel a nonexistent order

EXCEPTIONS

• Attempting the execution of an operation of ADT may sometimes cause an

error condition, called an exception

• Exceptions are said to be “thrown” by an operation that cannot be executed

CH5.
STACKS, QUEUES, AND DEQUES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES

AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM

NANCY M. AMATO

STACKS

• The Stack ADT (Ch. 5.1.1)

• Array-based implementation (Ch. 5.1.4)

• Growable array-based stack

STACKS

• A data structure similar to a neat stack of something, basically only access to top

element is allowed – also reffered to as LIFO (last-in, first-out) storage

• Direct applications

• Page-visited history in a Web browser

• Undo sequence in a text editor

• Saving local variables when one function calls another, and this one calls another, and so on.

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

THE STACK ADT

• The Stack ADT stores arbitrary objects

• Insertions and deletions follow the last-in

first-out (LIFO) scheme

• Main stack operations:

• push(e): inserts element e at the top of the

stack

• pop(): removes and returns the top element of

the stack (last inserted element)

• top(): returns reference to the top element

without removing it

• Auxiliary stack operations:

• size(): returns the number of elements in the

stack

• empty(): a Boolean value indicating whether

the stack is empty

• Attempting the execution of pop or top on

an empty stack throws an

EmptyStackException

EXERCISE: STACKS

• Describe the output of the following series of stack operations

• Push(8)

• Push(3)

• Pop()

• Push(2)

• Push(5)

• Pop()

• Pop()

• Push(9)

• Push(1)

RUN-TIME STACK

• The C++ run-time system keeps track of
the chain of active functions with a stack

• When a function is called, the run-time
system pushes on the stack a frame
containing
• Local variables and return value

• Program counter, keeping track of the
statement being executed

• When a function returns, its frame is
popped from the stack and control is
passed to the method on top of the
stack

main() {

int i;

i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar

PC = 1

m = 6

foo

PC = 3

j = 5

k = 6

main

PC = 2

i = 5

ARRAY-BASED STACK

• A simple way of implementing the
Stack ADT uses an array

• We add elements from left to right

• A variable keeps track of the index
of the top element

Algorithm size()

return t + 1

Algorithm pop()

if empty() then

throw EmptyStackException

𝑡 ← 𝑡 − 1

return 𝑆 𝑡 + 1

S

0 1 2 t

…

ARRAY-BASED STACK (CONT.)

• The array storing the stack elements
may become full

• A push operation will then throw a
FullStackException

• Limitation of the array-based
implementation

• Not intrinsic to the Stack ADT

Algorithm push(𝑜)

if 𝑡 = 𝑆. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then

throw FullStackException

𝑡 ← 𝑡 + 1

𝑆 𝑡 ← 𝑜

S

0 1 2 t

…

NOTE ON ALGORITHM ANALYSIS

• Computer Scientists are concerned with describing how long an algorithm (computation) takes

• Described through functions which show how time grows

as function of input, note that there are no constants!

• 𝑂(1) – Constant time

• 𝑂 log 𝑛 - Logarithmic time

• 𝑂(𝑛) – Linear time

• 𝑂(𝑛2) – Quadratic time

• More detain in CSCE 222, MATH 302, and/or later in

course
1 2 3 4 5 6 7 8 9 10

T
im

e

Input Size

Constant Logarithmic Linear Quadratic

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF STACK ADT

• Performance

• Let 𝑛 be the number of elements in the stack

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

• Limitations

• The maximum size of the stack must be defined a priori, and cannot be changed

• Trying to push a new element into a full stack causes an implementation-specific

exception

GROWABLE ARRAY-BASED STACK

• In a push operation, when the array
is full, instead of throwing an
exception, we can replace the array
with a larger one

• How large should the new array be?
• incremental strategy: increase the size

by a constant 𝑐
• doubling strategy: double the size

Algorithm push(𝑜)

if 𝑡 = 𝑆. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then

𝐴 ← new array of size …

for 𝑖 ← 0 to 𝑡 do

𝐴 𝑖 ← 𝑆[𝑖]

𝑆 ← 𝐴

𝑡 ← 𝑡 + 1

𝑆 𝑡 ← 𝑜

COMPARISON OF THE STRATEGIES

• We compare the incremental strategy and the doubling strategy by analyzing

the total time 𝑇(𝑛) needed to perform a series of 𝑛 push operations

• We assume that we start with an empty stack represented

• We call amortized time of a push operation the average time taken by a push

over the series of operations, i.e., 𝑇(𝑛)/𝑛

INCREMENTAL STRATEGY ANALYSIS

• Let 𝑐 be the constant increase and 𝑛 be the number of push operations

• We replace the array 𝑘 = 𝑛/𝑐 times

• The total time 𝑇(𝑛) of a series of 𝑛 push operations is proportional to

𝑛 + 𝑐 + 2𝑐 + 3𝑐 + 4𝑐 + … + 𝑘𝑐
= 𝑛 + 𝑐 1 + 2 + 3 + … + 𝑘

= 𝑛 + 𝑐
𝑘(𝑘 + 1)

2

= 𝑂 𝑛 + 𝑘2 = 𝑂 𝑛 +
𝑛2

𝑐
= 𝑂 𝑛2

• 𝑇(𝑛) is 𝑂(𝑛2) so the amortized time of a push is
O n2

n
= 𝑂(𝑛)

Side note:

1 + 2 +⋯+ 𝑘

=

𝑖=0

𝑘

𝑖

=
𝑘 𝑘 + 1

2

DOUBLING STRATEGY ANALYSIS

•We replace the array 𝑘 = log2 𝑛
times

• The total time 𝑇(𝑛) of a series of n
push operations is proportional to

𝑛 + 1 + 2 + 4 + 8 + …+ 2𝑘

= 𝑛 + 2𝑘+1 − 1
= 𝑂 𝑛 + 2𝑘 = 𝑂 𝑛 + 2log2 𝑛 = 𝑂 𝑛

• 𝑇(𝑛) is 𝑂 𝑛 so the amortized time of

a push is
O n

n
= 𝑂(1)

1

2

1

4

8

SINGLY LINKED LIST

• A singly linked list is a concrete data
structure consisting of a sequence of
nodes

• Each node stores

• element

• link to the next node

next

elem node

A B C D



STACK WITH A SINGLY LINKED LIST

• We can implement a stack with a singly linked list

• The top element is stored at the first node of the list

• The space used is 𝑂(𝑛) and each operation of the Stack ADT takes 𝑂(1) time



nodes

elements

top

EXERCISE

• Describe how to implement a stack using a singly-linked list

• Stack operations: push(𝑥), pop(), size(), isEmpty()

• For each operation, give the running time

STACK SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

pop() 𝑂(1) 𝑂(1) 𝑂(1)

push(o) 𝑂(1) 𝑂(𝑛)Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1)

top() 𝑂(1) 𝑂(1) 𝑂(1)

size(), empty() 𝑂(1) 𝑂(1) 𝑂(1)

QUEUES

• The Queue ADT (Ch. 5.2.1)

• Implementation with a circular array (Ch. 5.2.4)

• Growable array-based queue

• List-based queue

APPLICATIONS OF QUEUES

• Direct applications

• Waiting lines

• Access to shared resources (e.g., printer)

• Multiprogramming

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

THE QUEUE ADT

• The Queue ADT stores arbitrary objects

• Insertions and deletions follow the first-in
first-out (FIFO) scheme

• Insertions are at the rear of the queue and
removals are at the front of the queue

• Main queue operations:

• enqueue(e): inserts element 𝑒 at the end of
the queue

• dequeue(): removes and returns the element
at the front of the queue

• Auxiliary queue operations:
• front(): returns the element at the front

without removing it

• size(): returns the number of elements
stored

• empty(): returns a Boolean value
indicating whether no elements are
stored

• Exceptions
• Attempting the execution of dequeue

or front on an empty queue throws an
EmptyQueueException

EXERCISE: QUEUES

• Describe the output of the following series of queue operations

• enqueue(8)

• enqueue(3)

• dequeue()

• enqueue(2)

• enqueue(5)

• dequeue()

• dequeue()

• enqueue(9)

• enqueue(1)

ARRAY-BASED QUEUE

• Use an array of size 𝑁 in a circular fashion

• Two variables keep track of the front and rear

• 𝑓 index of the front element

• 𝑟 index immediately past the rear element

• Array location 𝑟 is kept empty

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

QUEUE OPERATIONS

•We use the modulo operator

(remainder of division)

Algorithm size()

return (𝑁 − 𝑓 + 𝑟) 𝑚𝑜𝑑 𝑁

Algorithm isEmpty()

return 𝑓 = 𝑟

Q

0 1 2 rf

Q

0 1 2 fr

QUEUE OPERATIONS (CONT.)

• Operation enqueue throws an exception if
the array is full

• This exception is implementation-dependent

Algorithm enqueue(𝑜)

if size() = 𝑁 − 1 then

throw FullQueueException
𝑄 𝑟 ← 𝑜
𝑟 ← 𝑟 + 1 mod 𝑁

Q

0 1 2 rf

Q

0 1 2 fr

QUEUE OPERATIONS (CONT.)

• Operation dequeue throws an
exception if the queue is empty

• This exception is specified in the
queue ADT

Algorithm dequeue()

if empty() then

throw EmptyQueueException
𝑜 ← 𝑄[𝑓]
𝑓 ← 𝑓 + 1 mod 𝑁

return 𝑜

Q

0 1 2 rf

Q

0 1 2 fr

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF QUEUE ADT

• Performance

• Let 𝑛 be the number of elements in the stack

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

• Limitations

• The maximum size of the stack must be defined a priori, and cannot be changed

• Trying to push a new element into a full stack causes an implementation-specific

exception

GROWABLE ARRAY-BASED QUEUE

• In enqueue(𝑒), when the array is full, instead of throwing an

exception, we can replace the array with a larger one

• Similar to what we did for an array-based stack

• 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 𝑞 has amortized running time

• 𝑂(𝑛) with the incremental strategy

• 𝑂(1) with the doubling strategy

EXERCISE

• Describe how to implement a queue using a singly-linked list

• Queue operations: enqueue(𝑥), dequeue(), size(), empty()

• For each operation, give the running time

QUEUE WITH A SINGLY LINKED LIST

• The front element is stored at the head of the list, The rear element is stored at the tail of the list

• The space used is 𝑂(𝑛) and each operation of the Queue ADT takes 𝑂(1) time

• NOTE: we do not have the limitation of the array based implementation on the size of the stack

b/c the size of the linked list is not fixed, i.e., the queue is NEVER full.

f

r



nodes

elements

front rear

QUEUE SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

dequeue() 𝑂(1) 𝑂(1) 𝑂(1)

enqueue(𝑜) 𝑂(1) 𝑂(𝑛)Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1)

front() 𝑂(1) 𝑂(1) 𝑂(1)

size(), empty() 𝑂(1) 𝑂(1) 𝑂(1)

THE DOUBLE-ENDED QUEUE ADT (CH. 5.3)

• The Double-Ended Queue, or Deque, ADT stores
arbitrary objects. (Pronounced ‘deck’)

• Richer than stack or queue ADTs. Supports
insertions and deletions at both the front and the
end.

• Main deque operations:

• insertFront(𝑒): inserts element 𝑒 at the
beginning of the deque

• insertBack(𝑒): inserts element 𝑒 at the end of
the deque

• eraseFront(): removes and returns the element
at the front of the queue

• eraseBack(): removes and returns the element at
the end of the queue

• Auxiliary queue operations:

• front(): returns the element at the front
without removing it

• back(): returns the element at the front
without removing it

• size(): returns the number of elements
stored

• empty(): returns a Boolean value
indicating whether no elements are stored

• Exceptions

• Attempting the execution of dequeue or
front on an empty queue throws an
EmptyDequeException

DOUBLY LINKED LIST

• A doubly linked list provides a natural

implementation of the Deque ADT

• Nodes implement Position and store:

• element

• link to previous node

• link to next node

• Special trailer and

header nodes

prev next

elem

trailerheader nodes/positions

elements

node

DEQUE WITH A DOUBLY LINKED LIST

• The front element is stored at the first node

• The rear element is stored at the last node

• The space used is 𝑂(𝑛) and each operation of the Deque ADT takes 𝑂(1) time

lastfirst

elements

PERFORMANCE AND LIMITATIONS
- DOUBLY LINKED LIST IMPLEMENTATION OF DEQUE ADT

• Performance

• Let 𝑛 be the number of elements in the stack

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

• Limitations

• NOTE: we do not have the limitation of the array based implementation on the

size of the stack b/c the size of the linked list is not fixed, i.e., the deque is

NEVER full.

DEQUE SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

List

Doubly-Linked

eraseFront(),
eraseBack()

𝑂(1) 𝑂(1) 𝑂(𝑛) for one at list tail,

𝑂(1) for other

𝑂(1)

insertFront 𝑜 ,

insertBack(𝑜)
𝑂(1) 𝑂(𝑛) Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1) 𝑂(1)

front(), back() 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1)

size(), empty() 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1)

INTERVIEW QUESTION 1

• How would you design a stack which, in addition to push and pop, also has a

function min which returns the minimum element? push, pop and min should

all operate in 𝑂(1) time

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of

different sizes which can slide onto any tower. The puzzle starts with disks sorted in

ascending order of size from top to bottom (i.e. , each disk sits on top of an even

larger one). You have the following constraints:

(1) Only one disk can be moved at a time.

(2) A disk is slid off the top of one tower onto the next tower.

(3) A disk can only be placed on top of a larger disk.

Write pseudocode to move the disks from the first tower to the last using stacks.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

